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Abstract Next location prediction has aroused great
interests in the era of Internet of Things (IoT). With the
ubiquitous deployment of sensor devices, e.g., GPS and
Wi-Fi, IoT environment offers new opportunities for
proactively analyzing human mobility patterns and
predicting user’s future visit in low cost, no matter outdoor
and indoor. In this paper, we consider the problem of next
location prediction in IoT environment via a session-based
manner. We suggest that user’s future intention in each
session can be better inferred for more accurate prediction if
patterns hidden inside both trajectory and signal strength
sequences collected from IoT devices can be jointly
modeled, which however existing state-of-the-art methods
have rarely addressed. To this end, we propose a Trajectory
and SIgnal Sequence (TSIS) model, where the trajectory
transition regularities and signal temporal dynamics are
jointly embedded in a neural network based model.
Specifically, we employ Gated Recurrent Unit (GRU) for
capturing the temporal dynamics in the multivariate signal
strength sequence. Moreover, we adapt gated Graph Neural
Networks (gated GNNs) on location transition graphs to
explicitly model the transition patterns of trajectories.
Finally, both the low-dimensional representations learned
from trajectory and signal sequence are jointly optimized to
construct a session embedding, which is further employed to
predict the next location. Extensive experiments on two
real-world Wi-Fi based mobility datasets demonstrate that
TSIS is effective and robust for next location prediction
compared with other competitive baselines.
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1 Introduction

Enabled by Internet of Things (IoT), human movement, no
matter outdoor and indoor, can be well tracked by GPS,
Wi-Fi access points, and other IoT devices in a ubiquitous
way. These online footprints in IoT environment thus offer
new opportunities for more accurately predicting user’s next
location without human intervention, which in turn helps to
enhance system design [1] or improve location based
services [2] in low cost. For example, with the indoor
moving trajectories tracked by Wi-Fi facilities in a shopping
mall, people’s mobility patterns can be inferred and the next
location they tend to visit can also be predicted, which can
help manage the store locations by rearranging the
frequently co-visited stores close to each other, and
meanwhile design proactive personalized advertisements to
increase the exposure of stores and products. Also, with
human mobility patterns analyzed, smart energy scheduling
can be better achieved [3]. Besides indoor movements,
outdoor trajectories, e.g., traces collected from wireless
PDAs in a campus [1], can be utilized for determining user’s
locations and optimizing network load balancing.

In this paper, we study the problem of next location
prediction in IoT environment, in which sensor signal
information collected by IoT devices (e.g. Wi-Fi) can be
easily obtained. The key aspect of this problem is how to
effectively and accurately capture user’s moving regularities
in the noisy IoT environment. Prior state-of-the-art
approaches usually make great efforts on revealing the
underlying patterns in human’s historical visited locations,
e.g., categorical location labels or real-valued check-in
tuples associated with latitude and longitude, also known as
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Fig. 1 An illustrative example of observed customer trajectory and signal
strength detected by Wi-Fi sensors.

trajectories. For example, Yao et al. [4] proposed to jointly
learn embeddings of multiple factors and transition patterns
of a recurrent neural network for next location prediction in
semantic trajectories. Feng et al. [5] designed a multi-modal
embedding recurrent neural network with attention
mechanisms for predicting human mobility. Feng et al. [6]
proposed to address the drawbacks of matrix factorization
by learning sequential and personalized patterns
simultaneously on check-in sequences.

However, none of the above methods consider trajectory
and the corresponding signal strength sequence
simultaneously, which are in fact essential to accurately
inferring user’s next location to be visited in IoT
environment. We show an illustrative example of observed
customer trajectory and signal strength detected by three
Wi-Fi sensors on a real-world dataset in Figure 1. We see
that in this example the customer follows a walking path,
denoted as “L1->L2->L3->L1”. It is obvious to see that
when the customer starts at location L1, the signal strength
received from sensor S 1 is the strongest among the three
sensors, which indicates that the customer is currently near
sensor S 1. However, one critical point that can easily be
overlooked is that the second strongest signal strength
received at location L1, i.e, the signal detected by sensor S 2,
which may indicate the next possible visited location is
likely to be near sensor S 2 and it turns out to be the case in
the example. As such, we suggest that the signal strength
collected from IoT devices may contain useful information
for understanding people’s movement patterns, especially
the intention of next visit, which makes signal strength at
least as important as user’s trajectories for accurately
predicting the next location.

Along this line, we propose a neural network model,
named Trajectory and SIgnal Sequence (TSIS), to jointly
learning movement patterns hidden inside both trajectory
and signal strength sequences collected from IoT devices for
next location prediction. Concretely, we first split each

user’s activities into separate sessions and handle sessions of
each user independently. By this means, we solve the next
location prediction problem via a session-based manner. The
next key aspect is to learn a good representation of each
session tailored for effective next location prediction.
Inspired by the recent work of session-based
recommendation [7], we adapt gated Graph Neural
Networks (gated GNNs) [8] for learning session
representation, i.e., explicitly capturing the transition
regularities from trajectories. Moreover, considering the
temporal dynamics in the session received signal strength,
we employ Gated Recurrent Unit (GRU) [9] to encode the
consecutive sequential patterns into a low-dimensional
embedding vector. Subsequently, a joint session embedding
is achieved to incorporate both the trajectory transition
regularities and the signal temporal dynamics. Finally, the
joint session representation is used for predicting
probabilities of candidate locations of people’s next visit in a
session.

Our contributions are summarized as follows:

• We suggest that signal strength is crucial for next
location prediction in IoT environment, which can help
to uncover the intention of user’s next visit.

• A novel predictive model, named TSIS, is proposed for
capturing both transition regularities in trajectories and
temporal dynamics in signal strength. To the best of our
knowledge, TSIS is the first model that incorporates
both trajectory and signal strength for accurate next
location prediction in IoT environment.

• Extensive experiments are performed on two real-world
Wi-Fi based mobility datasets (i.e., indoor Store and
outdoor WTD). The experimental results demonstrate
that TSIS outperforms competitive baseline methods
for next location prediction.

The rest of this paper is organized as follows. We begin to
give a literature review in Section 2. Section 3 introduces the
data description and problem definition. In Section 4, we give
the technical details of the proposed model. Experimental
results are shown in Section 5, and we finally conclude our
work in Section 6.

2 Related Work

In this section, to deepen our understanding of aspects
relevant to this paper, we review some existing literature on
predictive analytics using Wi-Fi signals, session-based
recommendation and next location prediction.
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2.1 Predictive Analytics using Wi-Fi Signals

Based on Wi-Fi signals, the most studied topic in the
computer science community is indoor localization. Over
the years, various solutions have been proposed for indoor
localization [10–12]. Traditional localization usually relies
on the trilateration and triangulation [13, 14] while the
majority of recent approaches take a Wi-Fi fingerprinting
process for processing Wi-Fi signals and associating them
with locations [15–17]. The main idea of Wi-Fi
fingerprinting is to characterize a position by signals, e.g.,
vectors of RSSIs (Received Signal Strength Indicators) [18]
from different Wi-Fi Access Points (APs) [19]. Besides
indoor localization, other device-free sensing tasks based on
Wi-Fi signals have recently attracted lots of attention. For
instance, Li et al. [20] proposed to monitor human’s vitality,
i.e., the information in which area the target is staying and
whether the target is still or non-still. Sapiezynski et al. [21]
inferred person-to-person physical proximity from the lists
of Wi-Fi access points. Zhang et al. [22] presented a novel
system for two Wi-Fi sensing problem, i.e., gait
identification and gesture recognition. Guo et al. [23]
proposed to use existing Wi-Fi infrastructures to provide
smart human dynamics monitoring. Kim and Lee [24]
utilized in-store sensors to predict the revisit intention of
customers.

2.2 Session-based Recommendation

Session-based recommendation shares the common
characteristic with our mobility prediction scenario. That is
the technologies such as MAC address of mobile devices or
websites cookies are sometimes not reliable enough for
accurate user identification and may raise great privacy
concerns [25]. Additionally, user’s short time behaviors are
considered as more important than long ranged behaviors for
understanding user’s complex time-variant intentions. As
such, user’s sequential behaviors should be split into
different sessions and each session can be handled without
emphasis of its corresponding user. By this means,
session-based traits modeling is recognized as the key for
effective recommendation. Recently, session-based
recommendation has been extensively studied and Recurrent
Neural Networks (RNNs) have been popular in achieving
state-of-the-art performance. Hidasi et al. [25] was the first
to introduce RNN based approach, namely GRU4Rec, for
session-based recommendation. More recently, several
neural networks based-models are proposed in order to
further improve the session-based recommendation

performance [7, 26, 27]. Jannach and Ludewig [26] adapted
k-nearest neighbor (kNN) for session-based
recommendation and found that the best results were often
achieved by combining kNN approach with GRU4Rec.
Yuan et al. [27] introduced a convolutional generative model
to address the modeling of long-range dependencies in
session-based next item recommendation. Wu et al. [7]
proposed to employ Graph Neural Networks (GNN) [28] for
capturing complex transitions of items and achieved
state-of-the-art performance compared to other competitive
baselines. Along this line, we are motivated to model the
trajectory sessions as graph data with GNN-based model [7].

2.3 Next Location Prediction

Typical next location prediction approaches aim at
characterizing user movement regularity from user’s
historical visited locations, e.g., categorical location labels
or real-valued check-in tuples associated with latitude and
longitude, also known as trajectories. Various predictive
models have been proposed, including Matrix Factorization
(MF) based methods [29], Markov Chain (MC) based
models [30], hidden Markov models (HMMs) [31], periodic
mobility models [32] and Recurrent Neural Network (RNN)
based methods [4, 5, 33]. Duong-Trung et al. [29] developed
a generative content-based regression model via matrix
factorization to tackle the near real-time geolocation
prediction problem. Rendle et al. [30] introduced
personalized Markov chains relying on personalized
transition matrices, which is expected to be able to capture
both sequential effects and long term user interests. Mathew
et al. [31] accounted for both location characteristics and
each individual’s previous actions for predicting users’
future locations. It first clustered the locations from the
trajectories and then employed a Hidden Markov Model for
capturing each user’s sequential patterns. Liu et al. [33]
proposed to use RNN to predict the next location with
spatial and temporal contexts considered. Yao et al. [4]
proposed to jointly learn embeddings of multiple factors and
transition patterns in semantic trajectories. Feng et al. [5]
designed a multi-modal embedding recurrent neural network
with attention mechanisms. From the application view,
while next location prediction problem has been extensively
studied on different kinds of mobility data, next POI
recommendation [6, 34–36] remains promising. However,
none of the above work considers both trajectory and signal
strength, which are both essential for accurately inferring
user’s next location to be visited in IoT environment.
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3 Preliminaries

Some preliminaries including data description and problem
definition are given in this section.

3.1 Data Description

In this paper, we aim to leverage both the trajectories and
signal strength collected from sensors for next location
prediction. The deployed sensors enable us to collect Wi-Fi
signals sent from any mobile devices (e.g., PDAs, smart
mobile phones or iPads). Each transaction record
corresponds to one single Wi-Fi signal instance which
includes anonymized device ID, sensor ID, timestamp and
RSSI (Received Signal Strength Indicator) level. Wi-Fi
signals are collected continuously from each mobile device
at regular intervals.

3.2 Problem Definition

In what follows, we formally introduce the main concepts in
our paper and formulate the next location prediction
problem in IoT environment. Since the activity sequence of
each mobile device (also regarded as an individual user) is
usually very long, e.g., the full length of each sequence
might be several days or months, we follow the fashion of
session-based recommendation to split each long sequence
into multiple shorter subsequences, which we denote as
sessions. This requires a conversion process, which is a key
data preprocessing step in our settings. The general logic of
the conversion is that a new session starts when the time
interval between the current and the last detected visit is
greater than a predefined threshold denoted as η. Since the
values of η are slightly varied on different datasets, detailed
discussion can be found in Section 5.1.

After obtaining each session s with n visits, we construct
two types of sequences which are assumed to be very
important in revealing user’s mobility patterns, including
received signal strength sequence RSSs and visited location
sequence Ls.

Definition 1. A received signal strength sequence RSSs is
a sequence of received signal strength vectors ordered by
timestamps, RSSs = {rsssi|i ∈ Z, 1 6 i 6 n}, and
rsssi = {rsssi j| j ∈ Z, 1 6 j 6 m}, where rsssi j is the received
signal strength (RSS) value of the j-th sensor observed by a
mobile device at time slot i for session s. Note that m is the
total number of sensors which is a fixed value in our settings

and n, the number of visits, varies in different sessions. It
can be seen that RSSs can be viewed as a multivariate time
series. Hereinafter, the terms such as signal, signal strength
or signal sequence can be short for received signal strength
sequence and we would interchangeably use these terms.

Definition 2. A visited location sequence Ls is an
anonymous sequence of visited locations ordered by
timestamps, Ls = {lsi|i ∈ Z, 1 6 i 6 n}. Note that lsi ∈ V
represents a visited location of the user at time slot i in
session s, where V = {l1, l2, ..., lv} denotes the set of unique
locations in all sessions. It is obvious that a visited location
sequence is exactly the same as trajectories mentioned in
previous literatures. We would interchangeably use these
two terms hereinafter.

The goal of our paper is to predict user’s next visited
location in IoT environment via a session-based manner.
Formally, given the records of users’ traits in the current
session s, including received signal strength sequence RSSs

and visited location sequence Ls, the task is to predict where
a user will go next within this session.

4 Proposed Model

As discussed previously, both the trajectories and signal
strength may indicate user’s intention of future movement,
and thus could be utilized for revealing user movement
patterns. As such, the general idea of our proposed model is
to effectively learn movement patterns hidden inside
trajectories and signal strength simultaneously. Specifically,
concerning trajectory modeling, previous methods [33] have
suggested that location transition is important, however
complex location transitions among sessions can not be
well-identified and explicitly modeled by existing methods.
Inspired by the recent advance of graph neural networks
(GNNs) in session-based recommendation [7], we
innovatively adapt GNNs in modeling sessions of
trajectories, since GNNs are well-suited for modeling graph
structured location transitions of trajectories with rich
location connections considered. As for signal
representation, Gated Recurrent Unit (GRU), a more
elaborate model of RNN unit, is employed due to its great
success in modeling variable-length sequence data. Finally,
we build a joint session embedding from the two
low-dimensional representations of trajectories and signal
strength, which is optimized under the supervision of
cross-entropy loss. We show the network architecture of
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Fig. 2 The network architecture of our proposed TSIS model. At the bottom, the received signal strength sequence is encoded with GRU units (hrss
s ). At

the top, the visited location sequence is encoded via gated GNNs (hl
s). A joint session embedding is then learned under the supervision of the cross-entropy

loss.

TSIS in Figure 2 and introduce its key components in the
following.

4.1 Visited Location Sequence Representation

We view the visited location sequence of each session s as a
directed subgraph Gs = (Vs, εs), where node corresponds to
an visited location lsi ∈ V and directed edge (ls,i−1, lsi) ∈ εs

indicates that location lsi is visited after ls,i−1 in session s.

To consider the location transitions in session subgraphs,
we first construct a location transition graph for each session,
which is denoted as Ĝs = (V̂s, ε̂s). In the location transition
graph V̂s, each node represents a unique location and each
edge indicates that there exists a transition between the two
locations.

To explicitly capture transition regularities from
trajectory session subgraphs, we employ gated Graph Neural
Networks (gated GNNs) [8], adaptation of GNNs [28], on
the built location transition graphs. As variant of standard
GNNs, gated GNNs use Gated Recurrent Units [9] for
propagating node features. Firstly, for each session s, a
visited location lsi at time slot i can be represented as a
v-dimensional one-hot vector, where non-zero entry denotes
the index for the corresponding location in V = {l1, l2, ..., lv}.
An location embedding module is then applied to learn a
d × v transformation matrix El, such that each location lsi

can be embedded into a d-dimensional dense feature vector

1 2 4 5 7 1 2 4 5 7

1 0 1 0 0 0 0 0 0 0 0

2 0 0 1 0 0 1 0 0 0 0

4 0 0 0 1 0 0 1 0 0 0

5 0 0 0 0 1 0 0 1 0 1

7 0 0 0 1 0 0 0 0 1 0

Outgoing edges Incoming edges

Fig. 3 An example of trajectory session subgraph and its corresponding
adjacency matrix As.

hl
si according to the following equation,

hl
si = Ellsi. (1)

We use Equation 1 as the initialized node vectors, i.e.
hl

si
(1)

= Ellsi. Subsequently, the information contained in the
node vectors hl

si is passed through the graph via the
adjacency matrix A in an iterative manner as follows:

a(t)
s,· = A>s

[
hl

s1
(t−1)

, . . . , hl
s,|Vs |

(t−1)
]>

+ b, (2)

where the adjacency matrix As reveals how locations in Gs

interact with each other based on the location transition
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graph Ĝs. As shown in Figure 3, the adjacency matrix As

utilizes both outgoing edges and incoming edges for
characterizing the network structure of location transitions.
As such, the activations a(t)

s,· at t-th iteration contain
information from edges in both directions. The remaining
updates are conducted in an GRU-like fashion,

z(t)
si = σ(Wza

(t)
si + Uzhl

si
(t−1)

), (3)

r(t)
si = σ(Wra

(t)
si + Urhl

si
(t−1)

), (4)

h̃l
si

(t)
= tanh(Woa(t)

si + Uo(r(t)
si � hl

si
(t−1)

)), (5)

hl
si

(t)
= (1 − z(t)

si ) � hl
si

(t−1)
+ z(t)

si � h̃l
si

(t)
, (6)

where zsi and rsi are the reset and update gates respectively.
After updating all nodes in session subgraphs until

convergence, we obtain each node’s final hidden vectors hl
si.

To represent each session s, we use the vectors of the last
visited location, i.e., hl

sn, as the session embedding hl
s from

the perspective of trajectory, hl
s = hl

sn.

4.2 Received Signal Strength Sequence Representation

To perform next location prediction, it is essential to learn
good representation for received signal strength sequence,
which captures the temporal dynamics of user movement
from the perspective of signal strength. For each session s,
we aim to learn a non-linear mapping F from the
variable-length multivariate time series RSSs to a
d-dimensional hidden feature vector hrss

s ∈ R
d,

hrss
s = F (RSSs). (7)

Due to the widely use and success of RNN-based models
in modeling variable-length sequence data for Natural
Language Processing (NLP) [37–39], we employ
RNN-based models for modeling temporal dynamics in
received signal strength sequence. Standard RNNs update
their hidden state h using the following update function,

hrss
si = g(WRSSsi + Uhrss

s,i−1), (8)

where g is the activation function, usually chosen as a
logistic sigmoid function and RSSsi is the input at time slot i
for session s. However, standard RNNs suffer from the
vanishing gradient problem. As such, we employ a Gated
Recurrent Unit (GRU) [9], a more elaborate model of an
RNN unit, as F to deal with this problem and better capture

long-term temporal dynamics. GRU gates essentially learn
when and by how much to update the hidden state of the
unit. The activation of the GRU is a linear interpolation
between the previous activation hrss

s,i−1 and the candidate
activation ĥrss

si ,

hrss
si = (1 − zsi)hrss

s,i−1 + zsiĥrss
si . (9)

The update gate zsi is calculated with

zsi = σ(WzRSSsi + Uzhrss
s,i−1). (10)

The candidate activation function ĥrss
si is computed in a simi-

lar manner,

ĥrss
si = tanh(WRSSsi + U(rsi � hrss

s,i−1)). (11)

Finaly the reset gate rsi is given by:

rsi = σ(WrRSSsi + Urhrss
s,i−1). (12)

Note that σ and � are a logistic sigmoid function and an
element-wise multiplication operator, i.e., Hadamard
product, respectively.

As shown in Figure 2, the last hidden state of GRU units,
i.e., hrss

sn , is used as the representation for the received signal
strength sequence of session s, since it encodes the temporal
dynamic information of the entire sequence.

4.3 Joint Session Embedding

Given the representation for a received signal strength
sequence hrss

s as well as the representation for the visited
location sequence hl

s, we concatenate them together as
[hrss

s ; hl
s] ∈ R

2d. We aim to learn a joint session embedding
via a mapping function H , such that the 2d-dimensional
input can be compressed into a d-dimensional vector hs. In
this work, we take linear transformation W j ∈ R

d×2d as the
mapping function H and calculate the joint session
embedding vector hs as,

hs = W j[hrss
s ; hl

s]. (13)

With the joint session embedding vector hs and the
location embedding matrix El, we obtain the v-dimensional
predicted score vector os as follows,

os = E>l hs. (14)

Then we derive the distribution over the v candidate locations
with the softmax function,

l̂s = so f tmax(os), (15)
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Table 1 Statistics of the datasets.

Statistics WTD Store

# of visits 181,004 4,825,999
# of training sessions 12,581 757,160
# of test sessions 3,415 114,346
# of locations 220 200
average length per session 11.32 5.54
range of signal strength value 0–31 0–100

where l̂s ∈ R
v denotes the predicted probabilities of the last

visited location within the session.
We use the cross-entropy of the prediction and the ground

truth as the loss function. Given a training set with S sessions,
the loss can be written as,

L = −

S∑
s=1

ls,Is log l̂s, (16)

where Is is the length of session s and ls,Is denotes the
v-dimensional one-hot vector of the last visited location for
session s. We use Stochastic Gradient Descent and the Back
Propagation Through Time algorithm to learn the parameters
of the model until convergence.

5 Experimental Results

In this section, we first introduce the datasets, baseline
methods and evaluation metrics. Then we compare our
proposed method with other state-of-the-art baselines for
next location prediction on two real-world datasets.
Moreover, by ablation experiment, we validate that both
trajectories and signal strength are essential for next location
prediction. The robustness of TSIS is also checked with we
different parameter settings and under different session
lengths. Finally, a case study of session clustering is
conducted to show the effectiveness of TSIS in revealing
human mobility patterns.

5.1 Datasets

We evaluate TSIS against popular baselines on two
real-world datasets, of which the statistics are summarized in
Table 1.

The first dataset is UCSD Wireless Topology Discovery
Trace [1], which is publicly available. This dataset contains
traces of 275 students with PDAs in the UCSD campus for
an 11-week period. While the device of each student was
powered on, the background data collection tool Wireless

Topology Discovery, i.e., WTD, collected every 20 seconds
for all APs (access points) that it could sense across all
frequencies. The transactional information of this trace data
used in our experiment include unique device identifier,
sampled time, unique identifier of the detected AP and
strength of AP signals received by device. We remove the
APs with low visited frequency in all the trace and finally
obtain 220 APs. This dataset can be referred to as WTD
hereinafter.

The second dataset is collected from one of the
brick-and-mortar stores of a Chinese household electrical
appliance retailers. 17 sensors were deployed in this store
and the signal strength received by customer mobile devices
were collected every 60 to 70 seconds. The time range of
this dataset is 69 days, from October 18, 2017 to December
25, 2017. The information used in the experiments is similar
to that of WTD dataset. We refer to this dataset as Store
hereinafter.

For all these two datasets, we treat the unique device
identifier as the unique identifier for each user. Generally, at
each time slot, we use the nearest AP identifier indicated by
signal strength as the corresponding location label.
However, as for Store dataset, there are only 17 sensors in
the raw data, which might be inadequate to assign each trace
record a precise and fine-grained position. As such, we
cluster the signal strength vectors of all trace records into
200 groups and use the cluster label as the location label of
each record. By this means we could extract each user’s
moving activities, i.e., sequences of signal strength and
visited locations. Note that, the range of signal strength
value for WTD is 0–31 while that for Store is 0–100. For the
ease of training, we take a min-max normalization method to
scale all signal strength values into [0, 1].

The next key aspect of data preprocessing is to divide
each activity sequence into multiple sessions for each user.
Revisit that the general logic of session splitting is that a
new session starts when the time interval between the
current and the last detected visit is greater than a predefined
threshold denoted as η. For WTD dataset, we followed the
authors that released this dataset [1] to use a simple heuristic
for determining the value of η. That is, requiring η = 1.5
minutes between sessions in which session boundary signal
strength was adequate (> RS S IMAX/3), and η = 4 minutes
between sessions where session boundary signal strength
was low (< RS S IMAX/3). This heuristic accounted for signal
fluctuations detected by sensors. For Store dataset, we set η
to 5 minutes as the default settings and also evaluate our
proposed model under different values of η in Section 5.5 to
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study the effect of η to the prediction performance. After
obtaining sessions, we filtered out all sessions of length 1.

For fair comparison, in each session, we use the last
visited location as the next visited location, i.e., the label of
the session, while the previous signal strength and location
records are treated as the input data. On Store dataset, the
last session of each user is reserved for testing while the
previous sessions of each user are for training. However, on
WTD dataset, the number of users is quite small, thus we
reserve the sessions of the last four weeks of each user as
testing. We follow the fashion of session-based
recommendation [25] and do not split the data mid-session,
which means each session is assigned to either the training
or the testing set.

5.2 Baseline Algorithms

To validate the effectiveness of our proposed method, we
compare it with competitive baseline methods as follows:

• POP: POP ranks all locations by their popularity on the
training set. It is a strong baseline despite its simplicity,
thus we include it for comparison.

• S-POP: S-POP ranks locations according to their
popularity in the current session. Ties are broken up
using global popularity values.

• MC: The markov chain model is a classical model,
which captures the consecutive sequential patterns.

• FPMC [30]: It is a sequential prediction method for
next-basket recommendation.

• PRME [6]: PRME is a recent state-of-the-art model for
next new POI recommendation.

• NextItNet [27]: NextItNet is a convolutional
generative network based model for session-based next
item recommendation. We use it as a baseline for next
location prediction.

• SR-GNN [7]: SR-GNN is currently the state-of-the-art
method for session-based recommendation. We use it as
a competitive baseline for next location prediction.

5.3 Evaluation Metrics

Several popular ranking-based metrics were adopted for
comparing next location prediction performance of different
models.

• Recall@k is the proportion of sessions for correctly
predicting next locations amongst the top-K predicted
locations in all test sessions. Note that the rank of the
groundtruth location is neglected by recall@k as long

as the location is amongst the top-K predicted
locations.

• MRR@k (Mean Reciprocal Rank) is the average
reciprocal ranks of the groundtruth locations in the
predicted list. The reciprocal rank is 0 if the rank
exceeds k. With MRR, the order of locations is
considered, where large MRR value indicates the
correct prediction in the top of ranking list.

Note that we report Recall@k and MRR@k with
k={5,10,15,20} in our experiments for comparison. For all
these two metrics, the larger the value, the better the
performance.

5.4 Parameter Setup & Model Optimization

For comparing next location prediction performance, we set
the dimensionality of latent vectors d = 100 on all datasets.
The sensitivity of TSIS to latent dimensionality d was given
later in Section 5.7. Other hyper-parameters was selected on
a validation dataset which is a random 10% subset of the
training set. All parameters of the network in TSIS were
initialized with a Gaussian distribution with a mean of 0 and
a standard deviation 0.1. Adam optimizer was employed for
parameter learning [40] and the learning rate was set to 0.01.
Mini-batch training technique was adopted and the batch
size was set to 1000. The max number of training epochs
was 30 with early-stopping employed.

For representing received signal strength sequence, we
use one layer of GRU. Other than GRU unit introduced in
Section 4.2, we also briefly experimented with different
network architectures, including (i) sequence to sequence
autoencoder [38], (ii) using sequence to sequence
autoencoder to first pretrain the parameters, and then
applying GRU units to train the model [41, 42]. Empirically
we found that our simple GRU based model achieves
comparable performance with the above two methods, but
with less computational costs. As such, we keep the simple
GRU unit in our architecture.

We experimented with different loss functions in TSIS,
including pointwise ranking based loss cross-entropy (i.e., the
one introduced in Section 4.3) and pairwise ranking based
loss Bayesian Personalized Ranking [25, 43, 44] (BPR). We
found BPR to perform worse than cross-entropy. Therefore,
we use cross-entropy loss in our model.

The proposed TSIS model is implemented in PyTorch and
all experiments were carried out on a Linux Server with Intel
Xeon E5-2609 v4 @ 1.70GHz CPU, 126 GB memory and 4
GeForce GTX Titan 1080 Ti GPUs.
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Table 2 Next location prediction performance on WTD dataset. The best results are in bold and the second best underlined.

Model WTD
Recall@5 MRR@5 Recall@10 MRR@10 Recall@15 MRR@15 Recall@20 MRR@20

POP 0.2688 0.1102 0.5467 0.1450 0.7687 0.1653 0.8173 0.1659
S-POP 0.8073 0.6046 0.8673 0.6128 0.9280 0.6176 0.9353 0.6180

MC 0.7522 0.6787 0.8281 0.6887 0.9080 0.6951 0.9179 0.6957
FPMC 0.8492 0.6185 0.9042 0.6256 0.9236 0.6272 0.9455 0.6284
PRME 0.5979 0.2633 0.8287 0.2943 0.9309 0.3027 0.9558 0.3041

NextItNet 0.8764 0.7184 0.9290 0.7260 0.9442 0.7272 0.9525 0.7277
SR-GNN 0.9198 0.7649 0.9595 0.7706 0.9706 0.7715 0.9755 0.7717

TSIS 0.9340 0.7913 0.9664 0.7959 0.9765 0.7967 0.9817 0.7970

Table 3 Next location prediction performance on Store dataset. The best results are in bold and the second best underlined.

Model Store
Recall@5 MRR@5 Recall@10 MRR@10 Recall@15 MRR@15 Recall@20 MRR@20

POP 0.6481 0.2747 0.6871 0.2799 0.8061 0.2886 0.8405 0.2907
S-POP 0.6592 0.3920 0.7304 0.4022 0.8170 0.4086 0.8556 0.4109

MC 0.6164 0.3373 0.6770 0.3457 0.7622 0.3520 0.8007 0.3542
FPMC 0.7357 0.4580 0.8441 0.4748 0.8944 0.4789 0.9206 0.4806
PRME 0.5959 0.4563 0.7139 0.4720 0.7795 0.4772 0.8252 0.4798

NextItNet 0.7254 0.4582 0.8338 0.4730 0.8861 0.4771 0.9152 0.4788
SR-GNN 0.7517 0.4942 0.8585 0.5088 0.9047 0.5124 0.9309 0.5140

TSIS 0.7745 0.5129 0.8706 0.5259 0.9142 0.5293 0.9379 0.5307

Table 4 Next location prediction performance on StoreRaw dataset. The best results are in bold and the second best underlined.

Model StoreRaw
Recall@5 MRR@5 Recall@10 MRR@10 Recall@15 MRR@15 Recall@20 MRR@20

POP 0.6595 0.3832 0.7961 0.4031 0.9990 0.4190 1.0000 0.4191
S-POP 0.8110 0.5474 0.9094 0.5616 0.9994 0.5688 1.0000 0.5688

MC 0.8078 0.5584 0.9771 0.5813 0.9987 0.5830 1.0000 0.5831
FPMC 0.8864 0.6085 0.9911 0.6235 0.9996 0.6243 1.0000 0.6243
PRME 0.8322 0.6023 0.9865 0.6233 0.9995 0.6305 1.0000 0.6322

NextItNet 0.8870 0.6185 0.9872 0.6326 0.9995 0.6336 1.0000 0.6336
SR-GNN 0.8938 0.6323 0.9914 0.6460 0.9996 0.6468 1.0000 0.6469

TSIS 0.9122 0.6577 0.9931 0.6690 0.9997 0.6696 1.0000 0.6696

Table 5 Next location prediction performance on Store-3 dataset. The best results are in bold and the second best underlined.

Model Store-3
Recall@5 MRR@5 Recall@10 MRR@10 Recall@15 MRR@15 Recall@20 MRR@20

POP 0.6762 0.2962 0.7076 0.3004 0.7456 0.3033 0.8250 0.3080
S-POP 0.6799 0.4123 0.7498 0.4222 0.7833 0.4248 0.8430 0.4283

MC 0.6318 0.3489 0.6910 0.3571 0.7297 0.3600 0.7912 0.3636
FPMC 0.7472 0.4795 0.8443 0.4921 0.8937 0.4961 0.9227 0.4977
PRME 0.5825 0.4710 0.6972 0.4868 0.7718 0.4927 0.8204 0.4955

NextItNet 0.7374 0.4737 0.8273 0.4858 0.8822 0.4901 0.9135 0.4919
SR-GNN 0.7649 0.5152 0.8540 0.5271 0.9050 0.5311 0.9296 0.5325

TSIS 0.7815 0.5349 0.8712 0.5478 0.9144 0.5503 0.9382 0.5517

5.5 Next Location Prediction Performance Comparison

The next location prediction performance in terms of 8
evaluation metrics on two datasets is shown in Table 2 and
Table 3, respectively. Note that all the reported results are
averaged over 10 times independent run. Also, we conduct
T-test between TSIS and each baseline for statistical

significance testing on each dataset. Since TSIS
incorporates both trajectories and signal strength for
revealing user mobility patterns, it is obvious to see that
TSIS consistently outperforms other competitive baseline
methods on both datasets in terms of all evaluation metrics.
Moreover, the advantages of TSIS over other baselines are
statistically significant (p-value < 0.001 by T-test) on both
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Table 6 Next location prediction performance on Store-10 dataset. The best results are in bold and the second best underlined.

Model Store-10
Recall@5 MRR@5 Recall@10 MRR@10 Recall@15 MRR@15 Recall@20 MRR@20

POP 0.6594 0.4414 0.7108 0.4478 0.7910 0.4548 0.8502 0.4583
S-POP 0.6791 0.4294 0.7483 0.4391 0.8132 0.4446 0.8630 0.4475

MC 0.6412 0.4321 0.6888 0.4384 0.7628 0.4447 0.8264 0.4483
FPMC 0.7435 0.4894 0.8526 0.5049 0.9035 0.5095 0.9303 0.5110
PRME 0.6018 0.4541 0.7143 0.4691 0.7791 0.4742 0.8275 0.4769

NextItNet 0.7421 0.4869 0.8506 0.5016 0.9012 0.5056 0.9288 0.5072
SR-GNN 0.7643 0.5190 0.8698 0.5337 0.9163 0.5374 0.9409 0.5388

TSIS 0.7846 0.5371 0.8798 0.5500 0.9236 0.5535 0.9467 0.5548

Table 7 Next location prediction performance on Store-15 dataset. The best results are in bold and the second best underlined.

Model Store-15
Recall@5 MRR@5 Recall@10 MRR@10 Recall@15 MRR@15 Recall@20 MRR@20

POP 0.6075 0.3930 0.7405 0.4145 0.8224 0.4215 0.8631 0.4238
S-POP 0.6689 0.4187 0.7738 0.4347 0.8375 0.4399 0.8717 0.4418

MC 0.6234 0.4158 0.7099 0.4293 0.7850 0.4355 0.8367 0.4385
FPMC 0.7503 0.4705 0.8534 0.4841 0.8984 0.4875 0.9282 0.4892
PRME 0.5984 0.4409 0.7150 0.4567 0.7816 0.4620 0.8311 0.4647

NextItNet 0.7552 0.4783 0.8507 0.4912 0.8985 0.4950 0.9260 0.4966
SR-GNN 0.7733 0.5061 0.8687 0.5190 0.9133 0.5225 0.9400 0.5241

TSIS 0.7884 0.5206 0.8778 0.5327 0.9205 0.5361 0.9441 0.5374
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Fig. 4 Next location prediction performance of our proposed method compared with its two submodels.

Table 8 Prediction performance with different session lengths (MRR@20).

Model WTD Store
Short Long Short Long

PRME 0.3788 0.3104 0.4263 0.4101
NextItNet 0.6820 0.8343 0.5210 0.3739
SR-GNN 0.7215 0.7438 0.5223 0.4148

TSIS 0.7291 0.7814 0.5402 0.4233

datasets. This guarantees the outperformance of our
proposed method over baselines does not happen by chance.
It is worthwhile to see that SR-GNN, which models the
location transition patterns in separated sessions using graph
neural networks, achieves second best prediction
performance, which demonstrates the power of graph neural
networks in session representations. By making predictions
based on repetitive co-occurred locations in current sessions,
S-POP makes great improvement compared with POP.

We also evaluate the next location prediction performance
on the original coarse grained Store dataset with 17 unique
locations, which we refer to as StoreRaw dataset. We can
see from Table 4 that all methods show improved prediction
performance than those on Store dataset in terms of all
evaluation metrics and our proposed method still
consistently outperforms other competitive baseline
methods. Due to the imprecise positioning issue on
StoreRaw dataset, we resort to Store instead of StoreRaw
dataset for the following experiments.

Additionally, to further study the effect of η to the next
location prediction performance, we varied η in {3, 10, 15}
minutes on Store dataset, which generated three variants of
Store dataset, denoted as Store-3, Store-10 and Store-15,
respectively. We compare TSIS with all baselines on these
datasets and show the results in Table 5, Table 6, Table 7,
respectively. From the results, we can see that the prediction
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Fig. 5 Influence of latent dimensionality to the prediction performance of our proposed model compared to SR-GNN and FPMC on both datasets. Re-
call@20 or MRR@20 (y-axis) vs. the number of latent dimensions (x-axis).

performance of TSIS did not fluctuate too much and our
model shows its consistent outperformance over all
baselines under different settings of η. This also validates
our proposed model is robust.

5.6 Ablation Experiment

To study the contribution of different information to TSIS,
we eliminate the impact of signal strength and visited
location sequence from TSIS, respectively. As such two
submodels are introduced, which differ in the manner of
session representation with our proposed model, but share
the same output layer.

• SignalModel uses GRU to encode only the signal
strength sequence of all sessions. Then the last hidden
vector of each session represents the session
embedding.

• LocationModel uses gated GNNs [8] to directly model
the location sequences and treat the last hidden vector of
each session as the representation vector.

The prediction performance of TSIS and its two
submodels in terms of Recall@10, MRR@10, Recall@20,
MRR@20 are shown in Figure 4. As for all four evaluation
metrics, it is obvious to see that the predictive performance
on both datasets degrades when the impact of either signal
strength or visited locations are eliminated from the model,
which indicates that signal strength and visited locations are
both indispensible for next location prediction. It is also
interesting to see that on Store dataset the signal strength is
more important than trajectory whereas on WTD dataset
trajectory is more important. This might be owing to that the
outdoor WTD dataset allows for larger space, which brings
more noisy information to signal strength.

5.7 Analysis of Latent Dimensionality and Session Lengths

We analyze the influence of latent dimensionality to the
prediction performance of TSIS compared to SR-GNN and
FPMC on both datasets. Figure 5 shows the Recall@20 and
MRR@20 for various latent dimensionality while keeping
other optimal hyperparameters unchanged. It is clear that in
terms of all evaluation metrics on both datasets the
performance of our proposed model first improves with
increasing number of latent dimensions, then reaches to a
stable level with further increasing number of latent
dimensions. It can also be seen that when the number of
latent dimensions is 100 our proposed model achieves
reasonable performance. This validates the settings of
number of latent dimensions in performance comparison
experiments. Moreover, even not with the best
dimensionality, our proposed model still outperforms other
compared methods in a large range. We can say that our
proposed model is not very sensitive to the number of latent
dimensions and can be well employed for practical
applications.

Further, we evaluate the prediction performance of TSIS
and three baselines in dealing with different lengths of
sessions. Specifically, we group each of the WTD and Store
datasets into two categories, i.e., Short and Long. Short
means that the length of sessions is less than or equal to 5
while Long means that the length of sessions is more than 5.
The percentages of session belonging to short group and
long group are 0.57 and 0.43 on WTD dataset while the
percentages on Store dataset are 0.79 and 0.21. We show the
prediction performance evaluated by MRR@20 in Table 8.
We can see that our proposed method can consistently
outperform the competitive baseline on two datasets with
different session lengths except for the case on WTD Long.
This validates the robustness of our proposed method.
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Fig. 6 Elbow method for choosing number of clusters K.

5.8 Case Study on Session Clustering

In order to show the interpretability of our proposed model,
we finally perform session clustering on StoreRaw dataset.
All the parameters used in this experiment are the same as
the default settings used in previous comparison experiments.
Specifically, for clustering sessions on StoreRaw dataset, we
first utilize our framework to generate the joint embedding
of each session, which is a 100 dimensional vector. Then
K-means is employed to generate clusters on these session
embeddings.

As the number of clusters K needs to be initially specified
but remains unknown in prior, we use the popular Elbow
method to select the optimal number of clusters by fitting the
model with a range of values for K. As in this case, we fit
the K-means model with the values of K varying from 1 to
50 with step-size 5. For each K, we compute the sum of
squared distances from each point to its assigned center,
denoted as distortion score, as shown in Figure 6. When the
model is fitted with 10 clusters, we can see an “elbow” in the
graph, which in this case is assumed to be the optimal
number of clusters.

We choose to set K to 10 and extract 10 clusters for all
sessions on StoreRaw dataset. To better understand the
moving behaviors for each cluster of sessions, we further
conduct FP-Growth analysis on the raw trajectories within
each cluster to extract most frequent moving patterns to
provide explanations for the cluster. For each cluster, we
plot the session embeddings using t-SNE as well as the most
two representative patterns of each cluster in Figure 7. We
can see that in some clusters, e.g., Cluster 1 and 7,
trajectories are distributed only in one floor, while for others,
e.g, Cluster 3, 4, 5 and 8, trajectories are distributed across
different floors, which also involves transitions between
different floors. Among cross-floor trajectories, Cluster 4, 5,
and 8 contain round trips between two floors. For example,
Cluster 4 shows a “floor 1 → floor 2 → floor 1 → floor 2”

moving path, whereas Cluster 8 shows a “floor 1 → floor 2
→ floor 1” moving path. This experiment validates that the
embeddings generated by our framework can be utilized to
capture the movement patterns of users and the trajectories
in each cluster are meaningful. This might also explain in
partial that why TSIS could beat some state-of-the-art
baselines for next location prediction.

Moreover, we plot the transition patterns with respect to
each cluster in Figure 8, where the entry (i, j) in the
transition matrix represents the observed frequency of
current location i transiting to location j. Note that the
transition matrices in Figure 8 are calculated over the
Top-200 frequent patterns mined by FP-Growth for each
cluster. Obviously, the transition patterns of different
clusters are also distinct. For example, in Cluster 2 little
probability mass lies in transition across different floors
while the other clusters contain high probability of cross
floor transition. This might be owing to the explicit
modeling of location transitions in our proposed model.

6 Conclusion

In this paper, we investigated the problem of next location
prediction in IoT environment. We proposed a TSIS model,
which learned good representation of each session by jointly
modeling transition regularities in trajectories and temporal
dynamics in signal strength. Extensive experiments on two
real-world Wi-Fi based mobility datasets demonstrated that
TSIS consistently outperformed competitive baseline
methods for next location prediction. Especially, by ablation
study, we empirically validated that both trajectories and
signal strength were essential to the success of accurate
prediction. In the future, we plan to extend our model by
incorporating auxiliary information such as position and
distance between locations to further enhance the next
location prediction performance.
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