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Abstract. Multi-label learning involving hundreds of thousands or even millions of labels is 

referred to as extreme multi-label learning, in which the labels often follow a power-law 

distribution with the majority occurring in very few data points as tail labels. As a promising 

solution of multi-label learning, however, the embedding-based methods face a problem that 

most of them have the basic low-rank assumption but the widespread of tail labels in data 

violates it. Recently, research efforts have been put on building tail label tolerant embedding-

based models, however, for real-life datasets containing substantial data points with only tail 

labels, simply treating them as label matrix outliers will incur severe information loss, 

meanwhile accurately computing the pairwise distances between label vectors turns infeasible. 

In light of this, we present the Matching Neural Network (MNN), which learns two neural 

mapping functions that encode feature vectors and label vectors into their distributed 

representations, respectively. A noise contrastive loss is also proposed to guide the training of 

the functions so as to ensure matched features and labels have similar distributed representation 

measured by cosine similarity. Extensive experiments on various benchmark datasets with 

state-of-the-art baselines demonstrate the more accurate predictions of MNN.  

1. Introduction 

Different from multi-class learning where each data point has one class/label, multi-label learning tries 

to predict a label vector given the features of a data point. In recent years, along with the rapid 

development of information technologies, large-scale multi-label applications with huge numbers of 

labels keep emerging. The problem that extreme multi-label learning wants to address is to train a 

classifier that can automatically tag a new data point with the most relevant subset of labels from an 

extremely large label set. To tackle this problem, numerous embedding-based approaches have been 

recently proposed [1], [2], [3], [4], [5], [6]. However, these  approaches still have limitations since the 

learning of embeddings depends heavily on similarities between label vectors, which might fail when 

substantial data points are tagged with only tail labels. Under such circumstance, tail labels can no 

longer be viewed simply as outliers. So it is almost impossible to compute the distance between two 

label vectors when they are entirely composed of tail labels. 

To learn embeddings more robustly, we propose the Matching Neural Network (MNN). Instead of 

computing similarities between label vectors to reveal low-dimensional subspace, MNN learns two 

mapping functions 𝑓𝑥(∙) and 𝑓𝑦(∙), where 𝑓𝑥(∙) projects features into a low-dimensional subspace and 

𝑓𝑦(∙) projects labels into the same subspace. We propose a loss function that combines contrastive loss 

[7] with negative sampling, to guide the learning of mapping functions so that matched features and 



 

 

 

 

 

 

labels will be projected near to each other in the subspace, and vise versa. In this way, MNN can 

reduce the reliance on label vector similarities, and thus gains expertise in learning from data points 

tagged with only tail labels. 

Extensive experiments on six benchmark datasets with state-of-the-art baseline methods 

demonstrate the more accurate predictive power of MNN. Its robustness against tail labels in learning 

embeddings is also testified in the comparative study with leading embedding-based methods. 

Specifically, MNN achieves 8% improvement over the best embedding-based baselines on the dataset 

“Amazon” with abundant tail labels.  

2. Related work 

2.1. Extreme Multi-label Classification 

Various approaches have been proposed to address the extreme multi-label learning, which can be 

broadly divided into embedding-based and tree-based methods. 

Embedding-based methods tackle extreme multi-label learning by reducing the number of 

effective labels. Generally, they project label vectors into a low dimensional subspace, and learn 

predictor for embedded label vectors instead of original one. The advantage is training complexity of 

predictor is largely decreased since dimensionality of embeddings is only up to several hundreds. 

However, an additional decompression module is needed to lift the embedded label vectors back to the 

original label space. 

Various compression and decompression techniques have been exploited. Hsu et al. [8] take a 

three-step approach to handle classification with large number of labels: 1) random transformation is 

applied to project high-dimensional label vector into lowdimensional one; 2) A regression model is 

trained as predictor for each dimension of compressed label vector given features of an example; 3) 

For a test example, its compressed vector is decompressed into original label space. Random 

transformation causes the decompression needs to solve an optimization problem for each incoming 

test example, which is time consuming. Therefore, Tai and Lin [9] propose the Principal Label Space 

Transformation (PLST), which used Principal Component Analysis (PCA) to accomplish the 

compression operation. Since PCA in PLST only focuses on minimizing the encoding error of label 

vectors, Chen and Lin [10] propose Conditional Principal Label Space Transformation (CPLST) to 

further applies Canonical Correlation Analysis (CCA) on feature space, which simultaneously 

considers the encoding error and prediction error. Zhang and Schneider [11] also take both label and 

feature matrix into consideration. 

Recently, Yu et al. [1] model multi-label classification as a general empirical risk minimization 

(ERM) problem with low-rank constraint, which generalizes both label and feature dimensionality 

reduction. However, the low-rank assumption is easily violated due to large number of tail labels in 

real-world datasets. Xu et al. [12] keep the low-rank assumption, and suppress the influence of tail 

labels by regarding them as label matrix outliers. Instead of globally projecting into a linear low-rank 

subspace, Bhatia et al. [2] learn embeddings by preserving the pairwise distances between only the 

closest label vectors. A k Nearest Neighbor (kNN) classifier is used for prediction, which leverages 

the fact that distances between closest label vectors have been preserved during training. Rather than 

changing the embedding methods in LTLS, Evron et al. [4] introduce an efficient loss-based learning 

and decoding algorithm with better accuracy by adding loss-based decoding methods to it. So as to 

allow trade-offs between accuracy, model size, and inference time. Gupta et al. [6] leverage word 

embedding techniques such as word2vec to learn label embeddings and achieve better accuracies and 

training speed. Besides, the algorithm further improve the performance by joint learning of embedding 

and regressors through a novel objective. Jalan et al. [5] accelerates extreme classification algorithm 

by constructing a balanced hierarchy which offers faster and better feature agglomerates than 

traditional clustering methods. Profiting from feature agglomerates, a relatively large embedding 

dimension can be used to preserve much of the information of the original vector. 



 

 

 

 

 

 

Tree-based methods aim towards faster prediction which can be achieved by recursively 

partitioning label or feature space. However, due to the cascading effect, the prediction error made at 

top-level is hard to be corrected at lower levels. As a result, these techniques have to trade-off‚ 

prediction accuracy for speed. 

The Label Partitioning by Sub-linear Ranking (LPSR) [13] reduces the prediction time by learning 

a hierarchy over a base classifier or ranker. The prediction accuracy and overall complexity of LPSR 

is governed by base multi-label classifier. However, classifiers are quick to train tend to have low 

prediction accuracy. FastXML [14] recursively partitions the feature space, instead of the label space, 

and observes only small number of labels are active in each region of feature space. PfastreXML [15] 

improves FastXML by replacing the original nDCG based loss function with propensity scored one, 

which is able to handle missing but relevant labels and tail labels. SwiftXML [16] improves tree based 

extreme classifiers by partitioning tree nodes using two hyperplanes learnt jointly in the label and data 

point feature spaces and can tackle warm-start applications by leveraging label features. More than the 

use of a forest of decision trees similar to PfastreXML, CRAFTML [17] exploits a random forest 

strategy to obtain diversity and preserve more information. A novel low-complexity splitting strategy 

is also proposed to avoid the resolution of a multi-objective optimization problem at each node. 

2.2. Metric Learning  

Distance metric learning is a representative approach of learning similarities (or dissimilarities) for 

homogeneous data [18], [19], [20]. Typically, a linear transformation is learned for mapping objects 

from the same space into a latent space. In that space, dot product or Euclidean distance is often taken 

as measurement of similarity. Recently, learning a similarity function for a pair of objects from two 

different spaces has emerged [21], [22], which is also known as learning to match. SLEEC [2] is an 

instance of distance metric learning while our model is an instance of learning to match, and both 

models are tailored for extreme multi-label learning by solving problems like scalability and tail labels. 

Several other methods for multi-label learning [23], [24] are based on distance metric learning, 

however, they are not suited for extreme multi-label learning, since they are less scalable and aim at 

predicting all relevant labels, which is not appropriate for data with a large number of labels due to 

missing labels and tail labels as suggested in [15].   

3. Method 

Generally speaking, we propose a distance metric learning approach for the multi-label learning task. 

But our focus is not on the distances between labels. Rather, we try to learn a distance metric for a pair 

of heterogeneous objects, i.e., the features and labels, such that both of them can be mapped into a 

same subspace for more accurate matching. This way of modeling helps us avoid the explicitly 

computing of distances between label vectors, which is critically important to gaining robustness 

against tail labels. 

Therefore, we propose a Matching Neural Network (MNN) that learns to match features with its 

corresponding labels, which less depends on similarities between labels. As shown in Figure 1, MNN 

consists of two parts: 1) the Averaging Neural Network (ANN) that acts as a mapping function (or an 

encoder) that takes features or labels as input and outputs a real-valued vector which also known as 

distributed representation that encodes inherent informations within features or labels. 2) A noise 

contrastive loss function is proposed to provide the signal to guide the learning of the two ANNs. The 

ANNs of features and labels are identical in architecture, but are slightly different in computation. We 

will first introduce the ANN, along which we describe the computation of distribution representations 

for features and labels. Then, we present the feature dropout that prevents MNN from overfitting the 

training data. At last, we discuss the construction of the noise contrastive loss function. 



 

 

 

 

 

 

 
Figure 1. The architecture of the Matching Neural Network (MNN) for extreme multi-label learning. 

3.1. Averaging Neural Network 

Averaging Neural Network (ANN) consists of three layers namely input layer, embedding layer and 

averaging layer. By applying the feed-forward process of ANN to input features or labels, one can 

obtain its distributed representation. 

3.1.1. Input Layer and Embedding Layer. The label input to the ANN is 𝑦 = {𝑦1, ⋯ , 𝑦𝑇}, where 𝑦𝑡 ∈
ℝ𝐿 is one-hot-vector representation of the t-th label and L is the dimensionality of label space. T is the 

length of the labels, which varies for different data points. The feature input to the ANN is 𝑥 =
{𝑥1, ⋯ , 𝑥𝐾} and 𝑤 = {𝑤1, ⋯ , 𝑤𝐾}, where 𝑥𝑘 ∈ ℝ𝑑 is one-hot-vector representation of the k-th feature 

and d is the dimensionality of feature space, and 𝑤𝑘 is a real value that indicates the weight of k-th 

feature. K is the length of the features, which also varies for different data points. 

Then the embedding layer transforms the one-hot vector of t-th label yt and the one-hot vector of k-

th feature  xk into a low-dimensional dense vector 𝑒𝑡,𝑒𝑘
′ . 

3.1.2. Averaging Layer. Given label embeddings 𝑒 = {𝑒1, ⋯ , 𝑒𝑇}, we apply a composition function g 

to get distributed representation z of label sequence y. In our model, g is an instantiation of Neural 

Bag-of-Words (NBOW) [25], which averages label embeddings 

𝐳 = 𝑔(𝐞) =
1

𝑇
∑ 𝑒𝑡

𝑇

𝑡=1

(1) 

Given feature embeddings 𝐞′, g computes the features’ distributed representation 𝐳′ by weighted 

averaging feature embeddings 𝐞′ due to the existing of weights w 

𝐳′ = 𝑔(𝐞′, 𝐰) =
1

𝐾
∑ 𝑒𝑘

′ 𝑤𝑘

𝐾

𝑘=1

(2) 

In summary, ANN is actually a mapping function that projects labels or features into their low-

dimensional representations, i.e., distributed representations. We denote 𝑓𝑥(𝑥, 𝑤)  and 𝑓𝑦(𝑦) as the 

mapping function for features and labels respectively: 

𝑓𝑦(𝐲) = 𝑔(𝑊𝑒𝐲) =
1

𝑇
∑ 𝑊𝑒𝑦𝑡

𝑇

𝑡=1

(3) 

𝑓𝑥(𝐱, 𝐰) = 𝑔(𝑊𝑒
′𝐱, 𝐰) =

1

𝐾
∑ 𝑊𝑒

′𝑥𝑘𝑤𝑘

𝐾

𝑘=1

(4) 

 



 

 

 

 

 

 

3.2. Feature Dropout 

To regularize neural networks, instead of dropping hidden units, a natural extension for the ANN is to 

randomly drop feature’s entire embedding before averaging features’ embeddings. By doing so, our 

ANN theoretically observes 2|𝑥| different feature sequence for each input x. 

Assume there is a vector r for feature sequence x with |𝑥| independent Bernoulli trials, each of 

which equals 1 with probability p. The embedding 𝑒𝑘 for feature 𝑥𝑘 in x is dropped from the average if 

𝑟𝑘 = 0, which exponentially increases the number of unique examples the network observes during 

training. This allows us to modify Equation 2: 

𝑟𝑘 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) (5) 

𝐳′ = 𝑔(𝐞′, 𝐰, 𝐫) =
1

‖𝐫‖1
∑ 𝑒𝑘

′ 𝑟𝑘𝑤𝑘

𝐾

𝑘=1

(6) 

The mapping function 𝑓𝑥(𝑥, 𝑤) now can be written as 

𝑓𝑥(x, w, r) = 𝑔(𝑊𝑒
′x, w, r) =

1

‖𝐫‖1
∑ 𝑊𝑒

′𝑥𝑘𝑟𝑘𝑤𝑘

𝐾

𝑘=1

(7) 

3.3. Noise Contrastive Loss 

Since our objective is to ensure distributed representation of features be similar to the one of its 

corresponding labels and vise versa, we need an appropriate loss function to provide the signal to 

guide the learning of our network. Here we propose a noise contrastive loss function which tries to 

maximize the cosine similarity of distributed representations between matched features and labels, 

meanwhile, tries to minimize the cosine similarity of distributed representations between closest 

mismatched pair. 

Contrastive loss [7] is often applied to learn a low-dimensional space by preserving the distance 

between a pair of homogeneous objects in their original space. However, it is not well suited for MNN, 

since our target is preserving the distance between a pair of heterogeneous objects. Therefore, we 

extend the contrastive loss to scenarios of learning to match by combining it with negative sampling. 

Formally, we take (xi,  yi)  as a matched pair, since they belong to the same data point. We 

randomly sample h negative samples {y1, ⋯ , yh} from training data for xi. Therefore, we construct a 

positive pair (xi,  yi)
+  and h negative pairs {(xi,  yi1)−, ⋯ , (xi,  yih)−} . Note that, for brevity of 

notation, we ignore the weights wi for xi. 

By applying the feed-forward process of ANN, we can obtain the distributed representations 𝑓𝑥(x) 

and 𝑓𝑦(y)  of features and labels. We define 𝑐(x, y) as cosine similarity between distributed 

representations of features and labels: 

𝑐(x, y) =
⟨𝑓𝑥(x), 𝑓𝑦(y)⟩

‖𝑓𝑥(x)‖2‖𝑓𝑦(y)‖
2

(8) 

For a positive pair (xi,  yi)
+, we define loss function as 

ℒ+(xi,  yi) =
1

4
(1 − c(xi,  yi)

2) (9) 

For a negative pair (xi,  yij)
−

, we define loss function as 

ℒ−(xi,  yij) = {𝑐(xi,  yij)
2

      𝑖𝑓 𝑐(xi,  yij) > 𝑚

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(10) 

m is margin that loss is zero when cosine similarity between negative pairs is small than m. The loss 

function for training set 𝒟 is defined as 

ℒ(𝒟) = ∑ ℒ+(xi,  yi)

𝑛

𝑖=1

+ max
1≤𝑗≤ℎ

(ℒ−(xi,  yij)) (11) 



 

 

 

 

 

 

where we take the maximum ℒ− among h negative samples instead of taking the sum or the mean of 

them, which prevents the whole loss from leaning to negative samples during the optimizing or 

prevents the whole loss from being more easily influenced by those noisy negative samples. 

4. Experiment 

4.1. Experimental Setup 

4.1.1. Dataset description. We evaluate the proposed model on six publicly available benchmark 

multi-label datasets from the Extreme Classification Repository [26] namely Bibtex, Delicious, Eurlex, 

Wiki10, DeliciousLarge and Amazon. The first three datasets with less than 5,000 labels are regarded 

as small datasets, while the last three are large datasets since their label dimensionalities range upto 

670,091. The detailed statistics for individual datasets are shown in Table 1. We keep the split 

between training and test datasets the same as given on repository page. 

Table 1. Dataset statistics. 

Dataset Number of 

Train Points 

Number of 

Test Points 

Feature 

Dimensionality 

Label 

Dimensionality 

Avg. Points 

per Label 

Avg. Labels 

per Point 

Bibtex 4,880 2,515 1,836 159 111.71 2.4 

Delicious 12,920 3,185 500 983 311.61 19.03 

Eurlex 15,539 3,809 5,000 3,993 25.73 5.31 

Wiki10 14,146 6,616 101,938 30,938 8.52 18.64 

DeliciousLarge 196,606 100,095 782,585 205,443 72.29 75.54 

Amazon 490,449 153,025 135,909 670,091 3.99 5.45 

4.1.2. Evaluation Metrics and Baseline Methods. Like most state-of-the-art methods in the extreme 

multi-label learning, we apply precision at k, denoted as precision@k, and normalized Discounted 

Cumulative Gain at k, denoted as nDCG@k as the metrics for comparison. 

Then we compare our model with four state-of-the-art methods on large datasets. These are listed 

below: 

Embedding-based methods that project the labels from high-dimensional space into a low-

dimensional sub-space: SLEEC [2], REML [12]. 

Tree-based methods that are designed for faster prediction by cutting the search space of labels. 

Since wrong predictions at top level is hard to be recovered, there methods typically trade-off 

prediction accuracy with speed: PfastreXML [15], LPSR [13]. 

Apart from above four scalable methods, other five representative multi-learning methods namely 

as 1-vs-all [27], ML-CSSP [28], CS [8], CPLST [10] and WSABIE [29] are further included in 

comparison on small datasets. 

4.2. Experimental Results  

4.2.1. Results on Large Datasets. We compare the prediction performance of our model with leading 

algorithms on three large datasets. The prediction results of baseline methods, except for REML, are 

provided by the extreme classification repository [26]. Results of REML are from its paper [12]. All 

results are measured in precision@k and nDCG@k for k = 1, 3 and 5. 

We first discuss the results on Wiki10 and DeliciousLarge as illustrated in Figure 2 and 3. Wiki10 

has a relative large average number of labels per point, as shown in Table 1, which implies it contains 

few data points filled with tail labels. DeliciousLarge has the largest average number of labels per 

training point and the largest average number of points per label, which implies correlations between 

labels in this dataset are stronger and number of data points filled with more tail labels than frequent 

ones is smaller as compared to other datasets. As a result, with sufficient correlations between labels, 



 

 

 

 

 

 

embedding-based methods perform better than tree-based ones on both Wiki10 and DeliciousLarge. 

Among embedding-based methods, our model outperforms SLEEC and REML on Wiki10, and 

outperforms REML while performs quite similar with SLEEC on DeliciousLarge. The less 

competitive performance of REML on DeliciousLarge might due to its linear sparse function designed 

to handle label matrix outliers has difficulty in scaling to hundreds of thousands of tail labels. The 

good performance of our method indicates learning to match features and labels is able to achieve or 

outperform leading embedding-based methods on large datasets, even when similarities between labels 

can be effectively utilized to learn embeddings. 

We then highlight the results on Amazon as illustrated in Figure 4. Our method significantly 

outperforms SLEEC and REML according to results in Figure 4. Amazon contains tens of thousands 

of data points filled with tail labels, which severely violates the assumption of leading embedding-

based models. The outperformance of our method indicates learning embeddings by matching features 

and labels is more robust against low-rank dimension reduction of REML and sparse locally label 

embedding of SLEEC on datasets like Amazon. Our method bridges the performance gap between 

embedding-based approaches with the leading tree-based one. 

Interestingly, REML becomes less and less competitive with MNN and SLEEC with the increasing 

of label dimensionality. REML applies divide-and-conquer strategy to scale to large datasets by 

splitting the original problem into several subproblems. However, with the increasing number of 

subproblems, its performance continuously degrades. Thus, REML is less practical than MNN and 

SLEEC on datasets with a huge set of labels. 

 

Figure 2. Precision@k and nDCG@k results on the Wiki10 dataset. 

 

Figure 3. Precision@k and nDCG@k results on the DeliciousLarge dataset. 

 

Figure 4. Precision@k and nDCG@k results on the Amazon dataset. 

4.2.2. Results on Small Datasets. Here we compare the prediction performance on three small datasets, 

which can be handled by more state-of-the-art multi-label learning methods such as CPLST and 

WSABIE etc. The prediction results measured in precision@k and nDCG@k for k = 1, 3 and 5 are 

presented in Table 2-3, where the results of REML on Eurlex are marked as − denoting the lacking of 

reported results and the code. 

On these datasets, tail label problem is not acute, still our model consistently outperforms 

embedding-based methods like WSABIE, REML and SLEEC and gains overall best performance 

against all other methods according to precisions in Table 2. As to results of nDCGs, we can find our 

model outperforms other embedding-based methods again, except for the nDCG@5 on Bibtex. The 

state-of-the-art performance of our model on small datasets indicates learning embeddings by 

matching features and labels is well suited for multilabel learning. 



 

 

 

 

 

 

Table 2. Precision@k results on small-scale datasets (with the best results in bold and the second best 

underlined). 

Method 
Bibtex Delicious Eurlex 

precision@1 precision@3 precision@5 precision@1 precision@3 precision@5 precision@1 precision@3 precision@5 

1-vs-all 62.62 39.09 28.79 65.02 58.88 53.28 79.89 66.01 53.80 

LPSR 62.11 36.65 26.53 65.01 58.96 53.49 76.37 63.36 52.03 

PfastreXML 63.46 39.22 29.14 67.13 62.33 58.62 75.45 62.70 52.51 
ML-CSSP 44.98 30.43 23.53 63.04 56.26 50.16 62.09 48.39 40.11 

CS 58.87 33.53 23.72 61.36 56.46 52.07 58.52 45.51 32.47 

CPLST 62.38 37.84 27.62 65.31 59.95 55.31 72.28 58.16 47.73 
WSABIE 54.78 32.39 23.98 64.13 58.13 53.64 68.55 55.11 45.12 

REML 65.13 41.35 29.89 66.30 61.75 56.67 − − − 

SLEEC 65.08 39.64 28.87 67.59 61.38 56.56 79.26 64.30 52.33 

MNN 65.21 43.61 33.48 68.88 62.44 57.85 81.02 65.17 53.81 

Table 3. nDCG@k results on small-scale datasets (with the best results in bold and the second best 

underlined). 

Method 
Bibtex Delicious Eurlex 

nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5 

1-vs-all 62.62 59.13 61.58 65.02 60.43 56.28 79.89 69.62 63.04 

LPSR 62.11 56.5 58.23 65.01 60.45 56.38 76.37 66.63 60.61 

PfastreXML 63.46 59.61 62.12 67.13 63.48 60.74 75.45 65.97 60.78 
ML-CSSP 44.98 44.67 47.97 63.04 57.91 53.36 62.09 51.63 47.11 

CS 58.87 52.19 53.25 61.36 57.66 54.44 58.52 48.46 40.79 

CPLST 62.38 57.63 59.71 65.31 61.16 57.8 72.28 61.64 55.92 
WSABIE 54.78 50.11 52.39 64.13 59.59 56.25 68.55 58.44 53.03 

REML 65.13 60.01 62.46 66.3 62.65 59.1 − − − 

SLEEC 65.08 60.47 62.64 67.59 62.87 59.28 79.26 68.13 61.6 

MNN 65.21 60.76 62.31 68.88 62.98 60.53 81.02 69.12 62.99 

5. Conclusion 

In this paper, we propose the Matching Neural Network (MNN) for extreme multi-label learning. By 

learning two mapping functions to project features and its labels near to each other in a latent space, 

MNN gains robustness in learning embedding against tail labels. A loss function extends the 

contrastive loss with negative sampling is proposed to guide the training of MNN. Feature dropout is 

also applied as a regularization technique, which prevents MNN from overfitting the data and 

improves the prediction accuracy. Extensive experiments on benchmark datasets demonstrate the 

superior of MNN to leading embedding-based methods, particularly with the presence of massive tail 

labels in data. 
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